Optical model potential of A =3 projectiles for 1p-shell nuclei

D.Y. Pang, W.M. Dean, and A.M. Mukhamedzhanov

A set of global optical potential parameters describing the elastic scattering of A = 3 particles ³*He* and ³*H* from 1p-shell nuclei, HT1p, is obtained by simultaneously fitting 118 sets of experimental data of ³*He* and ³*H* elastic scattering from ⁹*Be*, ¹⁰*B*, ¹¹*B*, ¹²*C*, ¹³*C*, ¹⁴*C*, ¹⁴*N*, ¹⁵*N*, ¹⁶*O*, ¹⁷*O*, and ¹⁸*O* within the incident energy interval $4 \le E \le 118.5$ MeV and 25 sets of elastic scattering data on ⁶*Li* and ⁷*Li* targets from $3 \le E \le 44$ MeV. HT1p is found to be superior to GDP08 [1], which is a systematic potential designed for the heavy-target region, in reproduction of the angular distributions of elastic scattering cross sections of ³*He* and ³*H* from 1p-shell nuclei at energies below 100 MeV. Above 100 MeV GDP08 is found to be better than HT1p.

This work has been published in Phys. Rev. C 91, 024611 (2015).

 D.Y. Pang, P. Roussel-Chomaz, H. Savajols, R.L. Varner, and R. Wolski, Phys. Rev. C 79, 024615 (2009)